jueves, 7 de enero de 2021

Diseño audiovisual

 El diseño audiovisual, también llamado diseño de imagen y sonido, es la rama del diseño que se centra en la comunicación mediante técnicas audiovisuales, como por ejemplo, la grabación de imagen y audio o la animación (manual como el stop motion, o digital como la animación 3D). El formato más común del medio audiovisual es el vídeo. A nivel laboral, el diseño audiovisual es esencial en la televisión, en la industria cinematográfica, en el desarrollo de videojuegos, en el márketing (mercadotecnia), en Internet (desde banners, videoclips, vlogs...).

El diseño audiovisual es relativamente reciente en comparación a otros campos del diseño como el diseño industrial o el diseño gráfico.

El diseño audiovisual es relativamente reciente en comparación a otros campos del diseño. Debido a ello es un conocimiento en constante expansión y evolución, también en parte por estar muy ligado a las nuevas tecnologías e Internet. Se podría decir que el diseño audiovisual nació con el cine (hermanos Lumière, 1895), puesto que fue la primera disciplina que conjuga sonido e imagen en movimiento. No obstante, en aquella época ni remotamente existía el concepto de diseño audiovisual.

Digitalización

Willard Boyle y George E. Smith inventaron en 1969 el CCD (dispositivo de carga acoplada, una memoria electrónica fotosensible), momento en el que la era analógica da paso a la era digital.

De dentro a fuera de la pantalla

Una de las principales limitaciones de los diseñadores audiovisuales es la relación entre el espacio digital, el espacio físico y la relación de estos con el usuario. Desde su creación, el diseño audiovisual ha buscado difuminar la frontera que impone la pantalla, por ejemplo, en exposiciones de museos.


Aplicaciones

Videoarte

El diseño audiovisual puede tener una finalidad puramente artística, como en las instalaciones del surcoreano Nam June Paik o como en algunas piezas del movimiento artístico fluxus. El videoarte es una de las formas del arte más demandadas en la sociedad posthumanista actual

Internet

En Internet, el diseño audiovisual juega un papel fundamental, pues está muy relacionado con el diseño web. Aunque una web no es un vídeo, suelen diseñarse con sonido e imagen en movimiento y los usuarios de Internet exigen cada vez más dinamismo y sencillez en las páginas web. La tarea del diseñador audiovisual en este caso es crear páginas intuitivas y atractivas pero que a la vez dispongan de toda la información.

Ciencia y tecnología

El diseño audiovisual puede ser útil como soporte visual en medicina, topografía, ingeniería y otras ciencias, puesto que permite explicar fenómenos complejos con animaciones sencillas.


Campo ocupacional

El diseñador de Imagen y Sonido estará capacitado para organizar, asistir, producir, realizar y asesorar en todos los aspectos referidos a lo audiovisual; y podrá ocupar sus conocimientos en áreas como:

  • Canales de televisión
  • Radios
  • Productoras de cine y tv
  • Servicios institucionales.
  • Estudios de Grabación
  • Realización de cortos cinematográficos, documentación, audiovisuales, vídeos independientes
  • Educación
  • Diseño Multimedia y 3D

Universidades donde se imparte

En Argentina se dicta en:

  • Facultad de Arquitectura, Diseño y Urbanismo (Facultad de Arquitectura, Diseño y Urbanismo (Universidad de Buenos Aires)) perteneciente a la Universidad de Buenos Aires (UBA)
  • Universidad Nacional de Lanús (UNLa)
  • Universidad de Palermo (UP)
  • Universidad Católica de Santa Fe (UCSF)
  • Universidad Nacional de Villa Maria (UNVM)
  • Universidad Argentina de la Empresa (UADE)

Se ha instituido el 21 de marzo como el Día del Diseñador de Imagen y Sonido.

Plano (propiedades)

 En geometría, un plano es un objeto ideal que solo posee dos dimensiones, y contiene infinitos puntos y rectas; es un concepto fundamental de la geometría junto con el punto y la recta.

Cuando se habla de un plano de polina, se está hablando del objeto geométrico que no posee volumen, es decir bidimensional, y que contiene un número infinito de rectas y puntos. Sin embargo, cuando el término se utiliza en plural, se está hablando de aquel material que es elaborado como una representación gráfica de superficies en diferentes posiciones. Los planos son especialmente utilizados en ingeniería, arquitectura y diseño, ya que sirven para diagramar en una superficie plana o en otras superficies que son regularmente tridimensionales.

Un plano queda definido por los siguientes elementos geométricos:

  • Tres puntos no alineados.
  • Una recta y un punto exterior a ella.
  • Dos rectas paralelas o dos rectas que se cortan.

Los planos suelen nombrarse con una letra del alfabeto griego.

Suele representarse gráficamente, para su mejor visualización, como una figura delimitada por bordes irregulares (para indicar que el dibujo es una parte de una superficie infinita).

En un sistema de coordenadas cartesianas, un punto del plano queda determinado por un par ordenado, llamados abscisa y ordenada del punto. Mediante ese procedimiento, a todo punto del plano corresponden siempre dos números reales ordenados (abscisa y ordenada), y recíprocamente, a un par ordenado de números corresponde un único punto del plano. Consecuentemente, el sistema cartesiano establece una correspondencia biunívoca entre un concepto geométrico como es el de los puntos del plano y un concepto algebraico como son los pares ordenados de números. En coordenadas polares, por un ángulo y una distancia. Esta correspondencia constituye el fundamento de la geometría analítica.

El área es una medida de extensión de una superficie, o de una figura geométrica plana, expresada en unidades de medida denominadas unidades de superficie. Para superficies planas el concepto es más intuitivo. Cualquier superficie plana de lados rectos, por ejemplo un polígono, puede triangularse y se puede calcular su área como suma de las áreas de dichos triángulos. Ocasionalmente se usa el término "área" como sinónimo de superficie, cuando no existe confusión entre el concepto geométrico en sí mismo (superficie) y la magnitud métrica asociada al concepto geométrico (área).


Propiedades

En un espacio euclidiano tridimensional ℝ3, podemos hallar los siguientes hechos (los cuales no son necesariamente válidos para dimensiones mayores):

  • O bien dos planos son paralelos, o bien se intersecan en una línea.
  • O bien una recta es paralela a un plano, o bien se interseca con el mismo en un punto, o bien está contenida en él.
  • Dos rectas perpendiculares a un mismo plano son paralelas entre sí.
  • Dos planos perpendiculares a una misma recta son paralelos entre sí.
  • Entre un plano Π cualquiera y una recta no perpendicular al mismo existe solo un plano tal que contiene a la recta y es perpendicular al plano Π.
  • Entre un plano Π cualquiera y una recta perpendicular al mismo existen infinitos planos tales que contienen a la recta y son perpendiculares al plano Π.

Ecuación vectorial del plano

Un plano queda definido por los siguientes elementos geométricos: un punto y dos vectores:

Punto P = (x1, y1, z1)
Vector u = (ux, uy, uz)
Vector v = (a2, b2, c2)

donde  y  son escalares.

Esta es la forma vectorial del plano; sin embargo, la forma más utilizada es la reducida, resultado de igualar a cero el determinante formado por los dos vectores y el punto genérico X = (x, y, z) con el punto dado. De esta manera la ecuación del plano es:

Donde (A, B, C) es un vector perpendicular al plano y coincide con el producto vectorial de los vectores u y v. La fórmula para hallar la ecuación cuando no está en el origen es:

Estrictamente

P = P0 + mA + nB es la ecuación del plano determinado por un punto fijo y dos vectores A y B no colineales.

Ecuación mediante vector ortogonal

a.x = 0, donde a es un vector ortogonal y x un punto del plano.

Posición relativa entre dos planos

Si tenemos un plano 1 con un punto A y un vector normal 1, y también tenemos un plano 2 con un punto B y un vector normal 2.

Sus posiciones relativas pueden ser:

  • Planos coincidentes: la misma dirección de los vectores normales y el punto A pertenece al plano 2.
  • Planos paralelos: si tienen la misma dirección los vectores normales y el punto A no pertenece al plano 2.
  • Planos secantes: si los vectores normales no tienen la misma dirección.

Distancia de un punto a un plano

Para un plano cualquiera  y un punto cualquiera  no necesariamente contenido en dicho plano Π, la menor distancia entre P1 y el plano Π es:

De lo anterior se deduce que el punto P1 pertenecerá al plano Π si y solo si D=0.

Si los coeficientes ab y c de la ecuación canónica de un plano cualquiera están normalizados, esto es cuando , entonces la fórmula anterior de la distancia D se reduce a:



Semiplano

Se llama semiplano, en geometría, cada una de las dos partes en que un plano queda dividido por una recta.

Analíticamente
La inecuación  determina un semiplano y su recta frontera 
La inecuación  determina un semiplano sin incluir la frontera . Este semiplano es un conjunto convexo, abierto y no acotado.
Partición
La recta de ecuación y los semiplanos  determinan una partición del plano, de modo que un punto cualquiera de este está exactamente en uno, y solo uno de los tres conjuntos: recta L, semiplanos  o .2

Postulados de la división de un plano

En cada pareja de semiplanos que una recta r determina sobre un plano existen infinitos puntos tales que:

  1. Todo punto del plano pertenece a uno de los dos semiplanos o a la recta que los determina.
  2. Dos puntos del mismo semiplano determinan un segmento que no corta a la recta r.
  3. Dos puntos de semiplanos diferentes determinan un segmento que corta a la recta 'r8.

Ley de la gravitación universal

 La ley de gravitación universal es una ley física clásica que describe la interacción gravitatoria entre distintos cuerpos con masa. Fue formulada por Isaac Newton en su libro Philosophiae Naturalis Principia Mathematica, publicado el 5 de julio de 1687, donde establece por primera vez una relación proporcional (deducida empíricamente de la observación) de la fuerza con que se atraen dos objetos con masa. Así, Newton dedujo que la fuerza con que se atraen dos cuerpos tenía que ser proporcional al producto de sus masas dividido por la distancia entre ellos al cuadrado. Para grandes distancias de separación entre cuerpos se observa que dicha fuerza actúa de manera muy aproximada como si toda la masa de cada uno de los cuerpos estuviese concentrada únicamente en su centro de gravedad, es decir, es como si dichos objetos fuesen únicamente un punto, lo cual permite reducir enormemente la complejidad de las interacciones entre cuerpos complejos.

Así, con todo esto resulta que la ley de la gravitación universal predice que la fuerza ejercida entre dos cuerpos de masas  y  separados una distancia  es igual al producto de sus masas e inversamente proporcional al cuadrado de la distancia, es decir:


donde

 es el módulo de la fuerza ejercida entre ambos cuerpos, y su dirección se encuentra en el eje que une ambos cuerpos.
 es la constante de gravitación universal.

Es decir, cuanto más masivos sean los cuerpos y más cercanos se encuentren, con mayor fuerza se atraerán.

El valor de esta constante de gravitación universal no pudo ser establecido por Newton, que únicamente dedujo la forma de la interacción gravitatoria, pero no tenía suficientes datos como para establecer cuantitativamente su valor. Únicamente dedujo que su valor debería ser muy pequeño. Solo mucho tiempo después se desarrollaron las técnicas necesarias para calcular su valor, y aún hoy es una de las constantes universales conocidas con menor precisión. En 1798 se hizo el primer intento de medición (véase el experimento de Cavendish) y en la actualidad, con técnicas mucho más precisas se ha llegado a estos resultados:​


en unidades del Sistema Internacional.

Esta ley recuerda mucho a la forma de la ley de Coulomb para las fuerzas electrostáticas, ya que ambas leyes siguen una ley de la inversa del cuadrado (es decir, la fuerza decae con el cuadrado de la distancia) y ambas son proporcionales al producto de magnitudes propias de los cuerpos (en el caso gravitatorio de sus masas y en el caso electrostático de su carga eléctrica).

Aunque actualmente se conocen los límites en los que dicha ley deja de tener validez (lo cual ocurre básicamente cuando nos encontramos cerca de cuerpos extremadamente masivos), en cuyo caso es necesario realizar una descripción a través de la relatividad general enunciada por Albert Einstein en 1915, dicha ley sigue siendo ampliamente utilizada y permite describir con una extraordinaria precisión los movimientos de los cuerpos (como planetas, lunas o asteroides) del Sistema Solar, por lo que a grandes rasgos, para la mayor parte de las aplicaciones cotidianas sigue siendo la utilizada, debido a su mayor simplicidad frente a la relatividad general, y a que esta en estas situaciones no predice variaciones detectables respecto a la gravitación universal.

Forma vectorial

Aunque en la ecuación  se ha detallado la dependencia del valor de la fuerza gravitatoria para dos cuerpos cualesquiera, existe una forma más general con la que poder describir completamente dicha fuerza, ya que en lugar de darnos únicamente su valor, también podemos encontrar directamente su dirección. Para ello, se convierte dicha ecuación en forma vectorial, para lo cual únicamente hay que tener en cuenta las posiciones donde se localizan ambos cuerpos, referenciados a un sistema de referencia cualquiera. De esta forma, suponiendo que ambos cuerpos se encuentran en las posiciones , la fuerza (que será un vector ahora) vendrá dada por la siguiente ecuación


donde  es el vector unitario que va del centro de la gravedad del objeto 1 al del objeto 2.

Cuerpos extensos

Se ha mencionado anteriormente que dichos cuerpos se pueden tratar como cuerpos puntuales, localizados en el centro de gravedad del cuerpo real, de tal forma que la descripción de esta fuerza se realiza trabajando únicamente con cuerpos puntuales (toda su masa se encuentra concentrada en su centro). Sin embargo, para algunos casos se puede hacer necesario tratar dichos cuerpos como lo que son, cuerpos con una extensión dada, es decir no puntuales. Un ejemplo donde este tratamiento es obligatorio es cuando se desea determinar cómo varía la fuerza de la gravedad a medida que nos situamos en el interior de un objeto, por ejemplo qué gravedad existe en el interior de la Tierra (en la región del manto terrestre o del núcleo).

En estos casos es necesario describir al objeto masivo como una distribución de masa, es decir, describirlo a través de su densidad en cada punto del espacio. Así, se integra la fuerza que produce cada elemento infinitesimal del cuerpo sobre cada elemento del otro objeto, sumando a todos los elementos que existen en el volumen de ambos cuerpos, lo cual matemáticamente se traduce en una integral sobre el volumen de cada cuerpo, de tal forma que la fuerza gravitatoria entre ambos se obtiene como


Donde

 son los volúmenes de los dos cuerpos.
 son las densidades de los dos cuerpos en cada punto del espacio ().

Puede verse que si se tienen dos cuerpos finitos entonces la fuerza gravitatoria entre ambos viene acotada por:

Donde  son las distancias mínima y máxima entre los dos cuerpos en un instante dado.

Aceleración de la gravedad

Considerando la segunda ley de Newton, que explica que la aceleración que sufre un cuerpo es proporcional a la fuerza ejercida sobre él, estando ambas relacionadas por una constante de proporcionalidad que es precisamente la masa de dicho objeto,

e introduciéndola en la ley de la Gravitación Universal (en su forma más simple, únicamente por simplicidad) se obtiene que la aceleración que sufre un cuerpo debido a la fuerza de la gravedad ejercida por otro de masa  es igual a

donde  es la aceleración sufrida. Es decir, dicha aceleración es independiente de la masa que presente nuestro objeto, únicamente depende de la masa del cuerpo que ejerce la fuerza y de su distancia. Por ello, si se tienen dos cuerpos de diferente masa (por ejemplo la Luna y un satélite artificial, que únicamente tenga una masa de unos pocos kilogramos) a la misma distancia de la Tierra, la aceleración que produce esta sobre ambos es exactamente la misma. Tal como la aceleración que tiene la misma dirección que la de la fuerza, es decir en la dirección que une ambos cuerpos, esto produce que si sobre ambos cuerpos no se ejerce ninguna otra fuerza externa, estos se moverán describiendo órbitas entre sí, lo cual describe perfectamente el movimiento planetario (o del sistema Tierra—Luna), o de caída libre aproximándose un cuerpo hacia el otro, como ocurre con cualquier objeto que soltemos en el aire y que cae irremediablemente hacia el suelo, en la dirección del centro de la Tierra.

Con esta ley se puede determinar la aceleración de la gravedad que produce un cuerpo cualquiera situado a una distancia dada. Por ejemplo, se deduce que la aceleración de la gravedad que nos encontramos en la superficie terrestre debido a la masa de la Tierra es de , que es la aceleración sufrida por un objeto al caer. Y que esta aceleración es prácticamente la misma en el espacio, a la distancia donde se encuentra la Estación Espacial Internacional,  (es decir, es un 95% de la gravedad que tenemos en la superficie, únicamente una diferencia de un 5%), siendo necesario recordar que el hecho de que los astronautas no sientan la gravedad no es porque esta allí sea nula, sino por su estado de ingravidez (de caída libre continua). Y la gravedad que ejerce una persona sobre otra, situada a un metro de distancia, es de en torno a  (para una persona de unos 100 kg). Este es el hecho por el que no sentimos la gravedad que ejercen cuerpos poco masivos como nosotros.

Preeminencia del cuerpo más masivo

Continuando con lo que se acaba de mencionar acerca de la aceleración que sufre un cuerpo como consecuencia de la presencia de otro objeto masivo, el hecho de que esta aceleración únicamente dependa de la masa de este objeto masivo muestra que, para dos cuerpos dados de diferente masa, el cuerpo menos masivo será el que sufra una aceleración mayor, y por tanto un cambio de movimiento más pronunciado. Con esto se observa directamente una respuesta a por qué es la Tierra la que órbita en torno al Sol y no al revés, puesto que este último tiene una masa increíblemente superior a la de la Tierra (unas 330 000 veces superior), haciendo en cambio que el movimiento experimentado por el Sol como consecuencia de la atracción que ejerce la Tierra sobre él sea insignificante. Y de igual modo, es la Luna (cuerpo menos masivo) la que orbita en torno a la Tierra.

Interior de un cuerpo esférico

Una de las consecuencias que trae que la gravedad sea una fuerza que depende como la inversa del cuadrado de la distancia es que si se tiene un cuerpo esférico, con una densidad que únicamente va variando a medida que nos alejamos del centro del cuerpo (lo cual podría ser un modelo que describe de forma bastante adecuada a la Tierra), se puede demostrar a través de la ley de Gauss que la fuerza en su interior (a una distancia  del centro) únicamente depende de la masa existente dentro de la esfera de radio . Es decir, la masa que hay fuera de dicha esfera no produce ninguna fuerza sobre un cuerpo situado en dicho punto. Por ello, dentro del cuerpo la fuerza ya no depende de la inversa cuadrado (puesto que ahora la masa a considerar depende también de dicha distancia) y resulta que es proporcional a dicha distancia. Esto es, en el interior del cuerpo la fuerza de la gravedad va creciendo conforme nos alejamos del centro del cuerpo (en donde esta es nula) hasta llegar a la superficie, donde se hace máxima.

Este razonamiento es válido para esferas homogéneas, es decir, de densidad uniforme. Sin embargo, la Tierra posee un núcleo metálico (el nife) mucho más denso que el manto y la corteza, por lo que la máxima intensidad del campo gravitatorio se produce precisamente en el límite entre el núcleo y el manto.

Una vez alcanzada la superficie exterior, se observa el comportamiento habitual de decrecimiento conforme nos alejamos del cuerpo. Todo esto se puede ver en mayor profundidad en la entrada de la intensidad del campo gravitatorio.

Interior de una corteza hueca

Y por extensión de lo que se acaba de mencionar, en el caso en que se tuviese un cuerpo esférico pero hueco por dentro (es decir que únicamente sería una cáscara esférica), en cualquier punto externo a él sigue produciendo una fuerza de la gravedad de acuerdo con la ecuación , es decir como si dicho cuerpo fuese puntual. Sin embargo, al ubicarnos dentro del mismo, observaríamos que no hay fuerza de la gravedad, puesto que en su interior ya no hay masa.

Movimiento de los planetas

Como se ha mencionado en el apartado histórico, esta ley permite recuperar y explicar la Tercera Ley de Kepler, que muestra de acuerdo a las observaciones que los planetas que se encuentran más alejados del Sol tardan más tiempo en dar una vuelta alrededor de este. Además de esto, con dicha ley y usando las leyes de Newton se describe perfectamente tanto el movimiento planetario del Sistema Solar como el movimiento de los satélites (lunas) o sondas enviadas desde la Tierra. Por ello, esta ley estuvo considerada como una ley fundamental por más de 200 años, y aún hoy sigue estando vigente para la mayoría de los cálculos necesarios que atañen a la gravedad.

Uno de los hechos que muestran su precisión es que al analizar las órbitas de los planetas conocidos en torno a 1800 (cuando todavía quedaban por descubrir Neptuno y Plutón), se observaban irregularidades en torno a la órbita de Urano principalmente, y de Saturno y Júpiter en menor medida, respecto a lo que predecía la ley de Newton (junto con las leyes de Kepler). Por esta razón, algunos astrónomos supusieron que dichas irregularidades eran debidas a la existencia de otro planeta más externo, alejado, que todavía no había sido descubierto. Así, tanto Adams como Le Verrier (de forma independiente) calcularon matemáticamente dónde debería encontrarse dicho planeta desconocido para poder explicar dichas irregularidades. Neptuno fue descubierto al poco tiempo por el astrónomo Galle, el 23 de septiembre de 1846, siguiendo sus indicaciones y encontrándolo a menos de un grado de distancia de la posición predicha.

Corrección del peso por la fuerza centrífuga en la Tierra

Cuando un cuerpo describe un movimiento circular su velocidad va cambiando constantemente de dirección, lo que significa que está sometido a una aceleración por no ser constante su velocidad, aunque su módulo o celeridad no cambie. En estas condiciones, la aceleración que experimenta el cuerpo se debe a una fuerza que actúa sobre el y que está dirigida hacia el centro de la trayectoria circular que recibe el nombre de fuerza centrípeta. Si esta fuerza dejase de actuar, el cuerpo abandonaría la trayectoria circular en dirección tangencial a la misma, adquiriendo un movimiento rectilíneo uniforme en ausencia de otras fuerzas.

Si se pone a girar una piedra atada a un cordel, este ejerce una fuerza centrípeta constante para tirar de la piedra acelerándola hacia el centro del círculo. La piedra ejerce sobre el cordel una fuerza igual y opuesta originando una tensión en el cordel que aumentará a medida que sea mayor la velocidad con que gira la piedra. Para calcular el valor de la fuerza centrípeta se usa la ecuación:

Donde:

, Fuerza centrípeta (usualmente en [N]).
 la masa del cuerpo que gira (usualmente en [kg]).
, velocidad lineal del cuerpo (usualmente en [m/s]).
, radio de la circunferencia (usualmente en [m]).

La fuerza centrífuga, es una fuerza ficticia percibida por un observador sobre la tierra que es igual en módulo y de sentido opuesto a la aceleración centrípeta de la superficie de la tierra, por lo que un observador situado sobre el ecuador terrestre percibirá una mayor fuerza centrípeta que en los polos. Esto se debe a que en un punto del ecuador se mueve más rápido que en uno próximo a los polos. Por tanto, cuando la Tierra da una vuelta alrededor de su eje, el punto sobre el ecuador habrá recorrido aproximadamente 40 000 km, que es el valor de la longitud de la circunferencia en el ecuador, mientras que el punto próximo a uno de los polos recorrería una distancia mucho más pequeña (de valor 0 exactamente en cada polo). Debido a ello, la velocidad lineal de un punto sobre el ecuador será mayor que la de un punto cerca de los polos y consecuentemente será mayor también su fuerza centrífuga. Como el efecto de la fuerza centrífuga es un distanciamiento respecto al eje de giro, la fuerza centrífuga percibida por un observador sobre la tierra equivale a que este vea que dichos cuerpos se alejan del eje de giro, reduciendo el efecto de la fuerza de gravedad de acuerdo con las medidas de dicho observador.

Por esa razón, al medir el peso efectivo de un cuerpo un observador situado cerca del ecuador medirá un menor peso que uno situado cerca de los polos, toda vez que la aceleración centrífuga medida es menor en los polos, además de encontrarse más cerca del centro de la Tierra debido al achatamiento de sus polos.

Fin de curso

 Por fin ha llegado el momento que llevamos esperando tantos años... el fin de la etapa escolar para pasar a la universitaria. Aunque parezc...